42 research outputs found

    Adaptive finite element simulation of three-dimensional surface tension dominated free-surface flow problems

    Get PDF
    An arbitrary Lagrangian--Eulerian finite element method is described for the solution of time-dependent, three-dimensional, free-surface flow problems. Many flows of practical significance involve contact lines, where the free surface meets a solid boundary. This contact line may be pinned to a particular part of the solid but is more typically free to slide in a manner that is characterised by the dynamic contact angle formed by the fluid. We focus on the latter case and use a model that admits spatial variation of the contact angle: thus permitting variable wetting properties to be simulated. The problems are driven by the motion of the fluid free surface (under the action of surface tension and external forces such as gravity) hence the geometry evolves as part of the solution, and mesh adaptivity is required to maintain the quality of the computational mesh for the physical domain. Continuous mesh adaptivity, in the form of a pseudo-elastic mesh movement scheme, is used to move the interior mesh nodes in response to the motion of the fluid's free surface. Periodic, discrete remeshing stages are also used for cases in which the fluid volume has grown, or is sufficiently distorted, by the free-surface motion. Examples are given of a droplet sliding on an inclined uniform plane and of a droplet spreading on a surface with variable wetting properties

    A multilevel approach for obtaining locally optimal finite element meshes

    Get PDF
    In this paper we consider the adaptive finite element solution of a general class of variational problems using a combination of node insertion, node movement and edge swapping. The adaptive strategy that is proposed is based upon the construction of a hierarchy of locally optimal meshes starting with a coarse grid for which the location and connectivity of the nodes is optimized. This grid is then locally refined and the new mesh is optimized in the same manner. Results presented indicate that this approach is able to produce better meshes than those possible by more conventional adaptive strategies and in a relatively efficient manner

    New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers

    Get PDF
    A selective dissolution process is developed that can quantify the amount of soluble material, geopolymer gel and remnant unreacted precursor in metakaolin-based geopolymer systems and determine the nanostructural features of the raw materials and geopolymer gel components. The susceptibility of alkalis leachability from the alkaline aluminosilicate hydrate-type gel (N-A-S-H) produced during the geopolymerization is not fully understood. This phenomenon led to deleterious processes from a microstructural, aesthetic and performance point of view. Geopolymers were synthesised using different contents and types of alkalis (M/Al = 0.50–0.83, where M represents Na or K), different contents of soluble silica in the activator (expressed as SiO2/M2O ratio of 1.0, 0.5 and 0.0), and curing temperatures (25 and 50 °C). The selective dissolution process is based on neutral dissolution at pH 7 to extract the soluble materials and acid dissolution using a strong acid at pH 0 to dissolve the geopolymer gel, which provides for the first time a method to quantify the (i) soluble material, (ii) geopolymer gel and (iii) unreacted material in geopolymers. The soluble material provides a reliable indication of the materials that can be removed from the geopolymers in a neutral pH environment and hence the potential for leaching and efflorescence, which is useful for durability prediction and service life. Quantification of remnant unreacted metakaolin determines the reactivity of the precursor and assesses the suitability of different synthesis conditions for varied applications. This work therefore provides a novel and widely applicable approach to determine the susceptibility of geopolymer materials to leaching

    Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation

    Get PDF
    The efflorescence formation in metakaolin-based geopolymers is assessed in this study to provide a better understanding of the effect of the synthesis parameters. Efflorescence formation depends on the physical and chemical properties of geopolymers as well as the environmental exposure conditions. In this study a set of fifteen geopolymers were synthesized using different formulation. An accelerated test of efflorescence development is presented, where the grade of degradation was evaluated by visual observation and correlated to leaching potential, physical properties and microstructural features. The use of soluble silicate in the activator provides a denser and a less permeable matrix. This makes the extraction of free alkalis to the surface more difficult, reducing the extent of alkali leaching and therefore efflorescence. The use of K+ is also effective to reduce visible efflorescence. The efflorescence formation is predicted by the properties of the gel formed which are dependent on the mix proportioning

    TGFÎČ inhibition stimulates collagen maturation to enhance bone repair and fracture resistance in a murine myeloma model

    Get PDF
    Multiple myeloma is a plasma cell malignancy that causes debilitating bone disease and fractures, in which TGFÎČ plays a central role. Current treatments do not repair existing damage and fractures remain a common occurrence. We developed a novel low tumour phase murine model mimicking the plateau phase in patients, as we hypothesized this would be an ideal time to treat with a bone anabolic. Using in vivo microCT we show substantial and rapid bone lesion repair (and prevention) driven by SD‐208 (TGFÎČ receptor I kinase inhibitor) and chemotherapy (bortezomib and lenalidomide) in mice with human U266‐GFP‐luc myeloma. We discovered that lesion repair occurred via an intramembranous fracture repair‐like mechanism and that SD‐208 enhanced collagen matrix maturation to significantly improve fracture resistance. Lesion healing was associated with VEGFA expression in woven bone, reduced osteocyte‐derived PTHrP, increased osteoblasts, decreased osteoclasts and lower serum TRACP‐5b. SD‐208 also completely prevented bone lesion development mice with aggressive JJN3 tumors, and was more effective than an anti‐TGFÎČ neutralizing antibody (1D11). We also discovered that SD‐208 promoted osteoblastic differentiation (and overcame the TGFÎČ‐induced block in osteoblastogenesis) in myeloma patient bone marrow stromal cells in vitro, comparable to normal donors. The improved bone quality and fracture‐resistance with SD‐208 provides incentive for clinical translation to improve myeloma patient quality of life by reducing fracture risk and fatality

    Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content

    Get PDF
    Stoichiometrically controlled alkali-activated materials within the system CaO-MgO-Na2O-Al2O3-SiO2 are produced by alkali-activation of high-purity synthetic powders chemically comparable to the glass in ground granulated blast furnace slag, but without additional minor constituents. Mg content controls the formation of hydrotalcite-group and AFm-type phases, which in turn strongly affects C-(N)-A-S-H gel chemistry and nanostructure. Bulk Mg content and the Mg/Al ratio of hydrotalcite-group phases are strongly correlated. With sufficient Ca, increased bulk Mg promotes formation of low-Al C-(A)-S-H and portlandite, due to formation of hydrotalcite-group phases and a reduction in available Al. Hydrotalcite-group phase formation is linked to increased C-(N)-A-S-H gel polymerisation, decreased gel Al uptake and increased formation of the ‘third aluminate hydrate’. These findings highlight the importance of considering available chemical constituents rather than simply bulk composition, so that the desired binder structure for a particular application can be achieved

    Finite element simulation of three-dimensional free-surface flow problems

    Get PDF
    An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet
    corecore